
  

 

Abstract— One of the challenges of developing flight control 

systems for liquid-propelled space vehicles is ensuring stability 

and performance in the presence of parasitic minimally damped 

slosh dynamics in the liquid propellants. This can be especially 

difficult when the fundamental frequencies of the slosh motions 

are in proximity to the frequency used for vehicle control. The 

challenge is partially alleviated since the energy dissipation and 

effective damping in the slosh modes increases with amplitude. 

However, traditional launch vehicle control design methodology 

is performed with linearized systems using a fixed slosh damping 

corresponding to a slosh motion amplitude based on heritage 

values.  This papers presents a method for performing the 

control design and analysis using damping at slosh amplitudes 

chosen based on the resulting limit cycle amplitude of the vehicle 

thrust vector system due to a control-slosh interaction under 

degraded phase and gain margin conditions. 

 

I. NOMENCLATURE 

𝑍                 = displacement of vehicle c.g. normal to 

reference trajectory (m) 

𝑍𝑠𝑗             = sloshing fluid displacement in jth tank (m) 

𝛽𝐸              = engine angle (rad) 

𝜙                = angle of vehicle centerline (rad) 

𝑎0               = attitude control gain (-) 

𝑎1               = attitude-rate control gain (-) 

𝑐2               = 𝑅′𝑋𝑐.𝑔. /𝐼  (1/s2) 

D                = drag force (N) 

𝐹                = total engine thrust (N) 

𝐼                 = pitch-yaw vehicle moment of inertia including 

engines and sloshing fluid (kg-m2) 

𝑘3               = 𝐹/𝑀 (m/rad-s2) 

𝑘4               = 𝑅′/𝑀 (m/rad-s2) 

𝑙𝑠𝑗               = c.g.-to-slosh mass distance = 𝑋𝑐.𝑔. − 𝑋𝑠𝑗  (m) 

𝑙𝑐.𝑝.             = center of percussion = 𝐼𝑥𝑥/(𝑀 ∗ 𝑋𝑐.𝑔.) (m) 

𝑀                = vehicle mass including engines and sloshing            

fluid (kg) 

𝑚𝑠𝑗             = slosh mass, jth tank (kg) 

𝑅′                = vectored engine thrust (N) 

𝑋𝑐.𝑔.            = center of gravity measured from gimbal (m) 

𝑋𝑠𝑗              = slosh mass location measured from gimbal (m) 

𝜁𝑠𝑗                = slosh damping, jth tank (-) 

𝜔𝑠𝑗               = slosh natural frequency, jth tank (rad/s) 
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II. INTRODUCTION 

Liquid propelled space vehicles, especially the stages of 
launch vehicles, are often over 90% propellant by mass.  This 
high propellant mass fraction is necessary in order maximize 
the payload that can be delivered to the desired trajectory state. 
The motion of the liquid propellant inside of the tanks can 
significantly affect the flight control stability and performance 
as most recently demonstrated by the failure of Flight 2 of the 
Space X Falcon 1 rocket in 2007 (Bjelde [7]). During Flight 2, 
the first stage burn was successful but approximately 90s into 
the burn of the second stage, a limit cycle developed in the 
pitch and yaw axis due to control interaction with the liquid 
oxygen tank which lead to pre-mature engine shutdown. The 
corrective action after Flight 2, was to add ring slosh baffles to 
the tank to increase the damping of the slosh mode. Tank 
baffles are an effective way of increasing slosh damping and 
were used on both the Saturn V and the Space Shuttle, but the 
mass impact necessitates minimizing the size and number of 
baffles.  

For flight control, the primary liquid motion of concern is 
the first lateral slosh mode of the liquid surface.  As described 
in (Dodge [5]) this motion can be described with a mechanical 
model of either a spring-mass-damper or a pendulum with 
viscous friction attached at a certain location inside the tank. 

Just as the pendulum model natural frequency (𝜔𝑛 = √𝑔/𝑙) 
increases with the vertical acceleration (𝑔) and decreases with 
length (𝑙), the slosh mode natural frequency increases with 
vertical acceleration, and decreases with tank diameter.  The 
natural frequencies of slosh modes in large diameters tanks 
with lower levels of acceleration can be easily be 0.5 Hz or 
lower. 

For cylindrical tanks the slosh mass, location, natural 
frequency, and damping can be predicted using analytical and 
empirical relationships (Dodge [5]). Often sub-scale ground 
testing is done to validate or adjust predictions. Recently, 
Computational Fluid Dynamics (CFD) has also been used in 
conjunction with sub-scale testing to develop better 
predictions of slosh parameters.  The specifics of the research 
into predicting slosh parameters is outside the scope of this 
paper. However, the key result is that the effective damping 
coefficient increases as a function of slosh motion magnitude 
due to increased fluid energy dissipation with larger motions.   
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The interaction of the slosh with vehicle control has been 
known to control system designers since the beginning of the 
space age in the 1960s.  Due to large diameter tanks often used 
on larger launch vehicles, non-slosh considerations such as 
performance and structural dynamics, the primary attitude 
control frequency is often in proximity to slosh modes.  One 
of the important results discussed in  Bauer [2] and Greensite 
[3] is that for an attitude control system with attitude and 
attitude rate feedback (i.e. PD control) with a single dominant 
slosh mass, only slosh mass locations between the vehicle CG 
and the vehicle center of percussion are destabilizing. For 
more complicated vehicles with multiple tanks, some of whose 
frequencies are close enough proximity to dynamically couple, 
the result no longer fully holds, but through practice is a been 
shown to be a good guideline for which slosh tanks may need 
baffles for extra damping. 

The traditional method for either accepting a given baffle 
design or for generating damping requirements for a baffle 
design is primarily based on control system stability analysis.  
The goal is to achieve the desired gain and phase margins of 6 
dB and 30 deg respectively, which are the traditional margins 
used for launch vehicles (see Dennehy [4] and Frosch & 
Vallely [1]).  This can be done with a numerical search routine 
as describe in Orr [6].  The wave height, of which the slosh 
damping is a strong function of, is traditionally not used inside 
the control system analysis and is instead applied based on a 
fixed value when the baffle damping is computed.  

The main impact to the control system in the event of 
unstable or poor slosh stability is the potentially excessive 
usage of the thrust vector control (TVC) system.  For a space 
vehicle with liquid engines, the TVC system is usually 
composed of gimballed liquid engines which are pivoted by 
means of a hydraulic or electro-mechanical linear actuator. 
Limits on linear actuator travel or engine interference limits 
maximum TVC angle deflection, power limits maximum TVC 
angular rates, and energy storage and temperature limitation 
constrain the allowable duty cycle. Significant impacts to 
vehicle and crew survivability may occur if these limits are 
encountered. 

The method presented in this paper is to augment the 
traditional linear approaches by using the non-linear damping 
profile as part of control system analysis. Central to the 
nonlinear analysis is the assessment of the impact to the TVC 
metrics resulting from a particular nonlinear slosh damping 
relationship. The method remains highly practical as a 
standard analysis method since it is still largely based upon 
linear-time-invariant (LTI) model, by computing several key 
transfer functions over a range of wave heights for a particular 
trajectory analysis point.  

III. SYSTEM EQUATIONS 

A. Plant Dynamics 

The systems equations of motions for a liquid rocket 
controlled by vectoring thrust 𝑅′ at the rear of the vehicle 
through gimballed engines (see Figure 1), with 𝑛 sloshing 
tanks represented using the spring-mass-damper model are 
here presented. The equations are based on the linearized 
planar equations of motions presented in Frosch & Vallely [1] 

which were used for control design and analysis of the Saturn 
V S-IC stage.  Dynamics not needed which were removed to 
simplify the system include structural dynamics, 
aerodynamics, nozzle dynamics, and sensor dynamics. These 
dynamics are not needed in order to show the impact of slosh 
on stability, but when included these dynamics do constrain 
the control design sufficiently to often force the main control 
frequency to be in proximity to slosh modes. 
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 The transfer function equations of motion are converted to 
state space form, assuming only a single slosh mass. A matrix 
𝐸 represents the coupled mass matrix and is numerically 
inverted prior to the computation of the final state space 
equations.  The outputs of the state space equations used for 
control are the attitude angle and rate of the vehicle.  
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u = βe  ( 5 ) 

 

Figure 1. Space vehicle diagram with gimballed thrust vector and 
slosh mass. 
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C =  [
0 1 0 0 0 0
0 0 0 0 1 0

]        ( 9 ) 

Eẋ =  A′x + B′u  ( 10 ) 

ẋ =  (E−1A′)x + (E−1B′)u         ( 11 ) 

y =Cx ( 12 ) 

B. Control System 

The control systems is simplified to be composed of attitude 
rate and attitude feedback only while sensor dynamics, 
actuator dynamics, internal delays, additional filtering for 
structural dynamics, and accelerometer feedback are omitted.  
The plant system and control system are connected to create 
the closed loop system. For open loop stability analysis, the 
loop is broken at the thrust vector angle 𝛽𝑒 .  Note that vehicle 
drift (𝑧, �̇�) is not observable through the feedback variables, 
resulting in neutrally stable poles.  Depending on the portion 
of flight, drift is either left un-controlled or is controlled 
through accelerometer feedback and/or a much slower outer 
guidance loop not analyzed here. 

βe = −a0ϕ − a1ϕ̇  ( 13 ) 

C. Example System Parameters 

A set of parameters were chosen to represent a hypothetical 
large upper stage similar in size to the upper stages used on the 
Saturn V or the Space Launch System. The parameters chosen 
exhibit poor slosh phase characteristics and proximal 
frequencies that readily challenge flight control stability.  

TABLE I.  SYSTEM PARAMETERS 

Name Value Units 

𝑭(=  𝐑’)  9 x 105 N 

𝑴 1.6 x 104 kg 

I 9 x 105 kg-m2 

𝑿𝒄.𝒈. 6 m 

𝑿𝒔𝟏 9 m 

𝒎𝒔𝟏 1.7 x 103 kg 

𝝎𝒔𝟏 2 rad/s 

𝜻𝒔𝟏 function of slosh 

amplitude 
- 

𝒂𝟎 0.08 rad/rad 

𝒂𝟏 0.14 rad/(rad/s) 

 

A plausible damping vs. slosh displacement amplitude is 
described by (14). For an actual launch vehicle design, this 
profile would be a function of liquid level in the tank and any 
slosh baffles present, and would be arrived at through ground 
testing and CFD. 

ζs1 = 10 
1

m
∗ (oscillation amplitude of zsj in m)  ( 14 ) 

D. Non-Linear Damping Simulation Method 

Add method for simulation non-linear damping in time 

domain here.  

IV. SLOSH LOCATION SENSITIVITY 

As discussed previously, the “danger zone” for slosh 

instability is, generally speaking, when the slosh mass is 

located between the mass center and center of percussion.  

The actual stability bounds can be derived by the equations 

of motion (Equations 1-3) and recognizing that the slosh 

phase instability will occur when, given the transfer function 

  

 

Figure 2. Bode of open loop response of example system with varying 

slosh mode damping. 



  

from vehicle gimbal to vehicle attitude, the zero associated 

with slosh dynamics is above the corresponding slosh pole. 

 

Add full derivation here resulting in equations (15) and (16) 

for the range of 𝑙𝑠.𝑗. within the “danger zone”. 

 

𝑙𝑠.𝑗. < 𝑙𝑐.𝑝.  ( 15 ) 

𝑙𝑠𝑗 > −
𝐹(𝑀−𝑚𝑠𝑗)

(𝑀2𝜔𝑠𝑗
2)

    ( 16 ) 

V. ANALYSIS METHOD 

A.  Stability Analysis 

An LTI system analysis can be performed on the system 
for different values of slosh damping.  The Bode diagram of 
the open loop system is show in Figure 2.  The slosh mode at 
approximately 0.35 Hz is at about twice the frequency of the 
0dB cross over frequency of 0.17 Hz.  

A Nichols diagram of the open loop response is shown in 
Figure 4 with a disc margin (𝐷𝑀) threshold of 1 connecting 
the desired gain margin (𝐺𝑀d) of 6dB and phase margin 

(𝑃𝑀𝑑) of 
1

6𝜋
 rad (30 deg) from the critical point at 0dB and -

 𝜋 (-180 deg). The disc margin represents the radius of the 
response (𝐺(𝜔)) in a gain and phase margin normalized 
Nichols plot and is computed by equation (17).  A minimum 
disc margin of 0.0 would correspond to a neutrally stable 
system and value of 1.0 would be minimum acceptable value 
for a robust control design.  

DM =  √
(

20log10(|G(ω)|)

GMd
)

2

+

(
((∠G(ω) mod 2π)−π)

PMd
)

2     ( 17 ) 

As can be seen in the Nichols diagram, the resulting LTI 
stability is a strong function of slosh damping and associated 
slosh amplitude. With a slosh mode damping of 1% the system 
is unstable.  A damping of 4.8% corresponds to being right on 
the desired disc margin. The 3% damping response is an 
example where the gain and phase margins are ample but the 
system is not robust, showing the importance of using a 
combined metric such as the disc margin. 

 The presence of time delay, actuator dynamics, and filters 

to attenuate structural dynamics would have the effect of 

adding additional phase lag at the slosh frequencies and this 

effect is not represented in the example system. In the 

Nichols plot this would have the effect of bending the 

response to the left underneath the disc, sometimes making 

the slosh response come closer to the critical point from the 

bottom or from the bottom left. 

B.  Thrust Vector Angle to Slosh Displacement Gain 

 The gain of the transfer function from the thrust vector angle 
𝛽𝑒 to the slosh mass displacement 𝑧𝑠𝑗 from the plant dynamics 

are shown in Figure 3.  Since this magnitude relationship is 
solely defined by the plant dynamics alone, it is not effected 
by any changes in the control system.  As slosh damping 
decreases the gain of zs1/βe of increases.  The consequence, 
is that for a given sized slosh limit cycle amplitude, a high gain 
means a small thrust vector angle amplitude. This simple 
fundamental relationship, along with the non-linear damping 
relationships enables the limit cycle assessment shown in the 
following section. 

C.  Predicted Thrust Vector Amplitude Limit Cycle  

As demonstrated in Figure 3, for a given slosh damping 
profile the stability of the system is a function of amplitude of 
the slosh, with the system being unstable at very low 

  

 

Figure 4. Nichols of open loop response of example system with 

varying slosh mode damping. 

  

 

Figure 3. Thrust vector angle to slosh displacement gain of plant for 

varying slosh damping. 



  

amplitudes, and stable at high amplitudes. For unforced 
conditions, a small unstable amplitude will grow in amplitude 
until damping is high enough that neutral stability is reached, 
resulting in a stable limit cycle. The damping corresponding 
neutral stability is associated with a slosh amplitude via the 
relationship in (14), and can be subsequently related to the 
thrust vector angle limit cycle amplitude by using the inverse 
of zs1/βe transfer functions corresponding to the damping at 
neutral stability.  

In order to properly account for margins in this process, the 
control system designer may choose both the permissible disc 
margin associated with the particular offending slosh mode as 
well as the acceptably small TVC limit cycle. The process is 
as follow: Find the damping which corresponds with just 
meeting threshold disc margin DMdamping-threshold (e.g. 4.8% 
damping for DM=1 in the example system) and assume that 
the disc margin is degraded such that the system becomes 
neutrally stable.  For time domain simulation, this could be 
accomplished with a gain change and time delay combination, 
but the method above is not explicitly dependent on the 
method or means by which the stability margin is degraded. 
For example, if the gain and phase degradation occurs outside 
of the thrust vector angle to slosh displacement dynamics, (e.g. 
sensor dynamics, flight control system dynamics, or actuator 
dynamics) then the thrust vector angle to slosh displacement 
gain won’t be affected.  If the degradation does occur inside 
the thrust vector to slosh dynamics then the thrust vector to 
slosh gain will change, but it is conservative to assume it is 
unchanged if slosh frequency greater than control frequency, 
since that situation involves a gain increase to cause the slosh 
mode to reach neutral stability, and that gain increase would 
correspond with a smaller TVC angle for a given slosh 
displacement.  The other case, when slosh frequency is less 

than the control frequency, is not likely in launch vehicle 
control system designs since they are typically bandwidth 
constrained by the presence of structural dynamics at 
frequencies above the slosh frequencies.  

The thrust vector angle to slosh displacement gain is a 
function of frequency and it is large close the slosh frequency 
and small further away.  If limit cycle were to develop far away 
from the slosh frequency, for example at the rigid body gain 
cross over frequency, then slosh displacement will only play a 
very small part of that, and thus even high slosh amplitudes, 
and the subsequent increases in slosh damping will have little 
effect on the rigid body control mode. To select the frequency 
range of interest, a limit cycle threshold DM (DMlimit-cycle-

threshold) value is chosen and all frequencies of the response 
which are below this threshold DM value are evaluated. To 
review the steps of the method are as follows: 

1. Chose a TVC angle amplitude which is 
considered sufficiently small to be acceptable for 
degraded conditions.  

2. Chose DMdamping-threshold and find the damping 
associated with being able to meet this margin. 
Determine the associated slosh displacement 
amplitude corresponding to this damping. 

3. Chose DMlimit-cycle-threshold and find the slosh 
related frequencies below this margin.  

4. Multiply the slosh displacement amplitude by the 
inverse of the zs1/βe transfer function for the 
determined frequency range to find the predicted 
limit TVC cycle amplitude under the degraded 
conditions. 

5. Check the maximum limit cycle amplitude over 
the frequency range against the chosen TVC 
threshold.  

For the example system, TVC limit of 0.5 degrees is 
chosen as an acceptably small limit cycle under degraded 
conditions, a DMdamping-threshold of 1 is chosen for finding the 
slosh damping which just meet a minimum disc margin, and a 
DMlimit-cycle-threshold of 1.1 is chosen for finding the slosh 
frequencies to use for evaluating the thrust vector limit cycle 
amplitude.   If there were other dynamics further away from 
slosh, which have a lower disc margin than this threshold, then 
those frequencies can be eliminated based on a frequency 
threshold.  In the example system, a damping of 4.8% 
(corresponding to a slosh amplitude of 0.48m) meets the 
DMdamping-threshold, and a frequency range between 
approximately 0.336 and 0.343 Hz corresponds to a disc 
margin less than the DMlimit-cycle-threshold. As Figure 5 shows the 
predicted limit cycle amplitude over the frequency range is on 
the order of 5 milliradians or approximately 0.3 degrees.  

The limit cycle prediction can easily be tested by degrading 
the gain and phase of the nominal system at the 4.8% damping 
level. Taking the minimum DM point at 0.34 Hz and degrading 
the control system with gain of 4.4 dB and a time delay of 170 
ms results in a system with neutrally stable complex poles at 
that frequency. A LTI impulse response of the neutrally stable 
system is shown in Figure 6.  As can be seen, for a slosh 
displacement of 0.48m, a TVC angle amplitude of about 0.005 
radians results.  

  

 

Figure 5. Predicted limit cycle amplitude of thrust vector angle over 

frequency range below DMlimit-cycle-threshold for example system with a 
slosh damping ratio of 4.8%. 



  

D.  Non-Linear Simulation Results 

Add non-linear simulation results here.  

VI. CONCLUSION 

The analysis method presented herein is a method for 

accepting the control system stability characteristics of a 

liquid propelled space vehicle given a model of slosh damping 

as a function of slosh displacement magnitude. The analysis 

method can also be used to develop a damping requirements 

profile that can be used to design the needed slosh baffles for 

a new design. The values of the TVC threshold, DMdamping-

threshold and DMlimit-cycle-threshold are a choice to the control system 

designer. The values chosen for the example system (0.5 

degrees, 1.0, and 1.1) are considered a reasonable 

conservative set of values.  The disc margin values can be 

argued to be over-conservative since for other dynamics, such 

as aerodynamics or rigid body dynamics, a DM of 1.0 is 

considered acceptable for a nominal system, and there is no 

expectation that a limit cycle of sufficiently small 

consequence would occur should the full DM be lost.  

It is important to stress that the above analysis treats only 

stability and not vehicle performance during external 

disturbances.  A non-linear Monte Carlo analysis with the 

non-linear damping profile and the appropriate external 

forcing functions should also be done to ensure acceptable 

performance. It is possible that the forced response will drive 

the slosh displacement high enough that it is outside of the 

range that has been characterized and can be accurately 

modelled or high enough to cause crash over and droplet 

formation which increases heat transfer from a cryogenic 

liquid to the pressurization gas in the ullage space above the 

liquid. 
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Figure 6. Time domain limit cycle demonstration of example system 

with a slosh damping of 4.8% and degraded gain and phase. 


